65 research outputs found

    Association of TIMP4 gene variants with steroid-induced osteonecrosis of the femoral head in the population of northern China

    Get PDF
    Background In clinical treatment, the use of steroid hormones is an important etiological factor of non-traumatic osteonecrosis of the femoral head (ONFH) risk. As an endogenous inhibitor of matrix metalloproteinases (MMPs) in the extracellular matrix, the expression of tissue inhibitors of metalloprotease-4 (TIMP4) plays an essential role in cartilage and bone tissue damage and remodeling, vasculitis formation, intravascular thrombosis, and lipid metabolism. Methods This study aimed to detect the association between TIMP4 polymorphism and steroid-induced ONFH. We genotyped seven single-nucleotide polymorphisms (SNPs) in TIMP4 genes and analyzed the association with steroid-induced ONFH from 286 steroid-induced ONFH patients and 309 normal individuals. Results We performed allelic model analysis and found that the minor alleles of five SNPs (rs99365, rs308952, rs3817004, rs2279750, and rs3755724) were associated with decreased steroid-induced ONFH (p = 0.02, p = 0.03, p = 0.04, p = 0.01, p = 0.04, respectively). rs2279750 showed a significant association with decreased risk of steroid-induced ONFH in the Dominant and Log-additive models (p = 0.042, p = 0.028, respectively), and rs9935, rs30892, and rs3817004 were associated with decreased risk in the Log-additive model (p = 0.038, p = 0.044, p = 0.042, respectively). In further stratification analysis, TIMP4 gene variants showed a significant association with steroid-induced ONFH in gender under the genotypes. Haplotype analysis also revealed that “TCAGAC” and “CCGGAA” sequences have protective effect on steroid-induced ONFH. Conclusion Our results indicate that five TIMP4 SNPs (rs99365, rs308952, rs3817004 rs2279750, and rs3755724) are significantly associated with decreased risk of steroid-induced ONFH in the population of northern China

    Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Get PDF
    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed

    A novel cache based on dynamic mapping against speculative execution attacks

    No full text
    The Spectre attacks exploit the speculative execution vulnerabilities to exfiltrate private information by building a leakage channel. Creation of a leakage channel is the basic element for spectre attacks, among which the cache-tag side channel is considered to be the most serious one. To block the leakage channels, a novel cache applies Dynamic Mapping technology, named DmCache, is presented in this paper. DmCache applies a dynamic mapping mechanism to temporarily store all the cache lines polluted by speculative execution and keep invisible when accessing. Then it monitors the head of the reorder buffer to determine which polluted cache line can become visible. In this paper, we demonstrated that Spectre attacks exerted no impact on a processor system equipped with DmCache based on the analysis of the processor’s circuit behaviour, which equipped with the DmCache and under the Spectre attack

    Applying Address Encryption and Timing Noise to Enhance the Security of Caches

    No full text
    Encrypting the mapping relationship between physical and cache addresses has been a promising technique to prevent conflict-based cache side-channel attacks. However, this method is not foolproof and the attackers can still build a side-channel despite the increased difficulty of finding the minimal eviction set. To address this issue, we propose a new protection method that integrates both address encryption and timing noise extension mechanisms. By adding the timing noise extension mechanism to the address encryption method, we can randomly generate cache misses that prevent the attackers from pruning the eviction set. Our analysis shows that the timing noise extension mechanism can cause the attackers to fail in obtaining accurate timing information for accessing memory. Furthermore, our proposal reduces the timing noise generating rate, minimizing performance overhead. Our experiments on SPEC CPU 2017 show that the integrated mechanism only resulted in a tiny performance overhead of 2.9%

    Method for Retrieving Digital Agricultural Text Information Based on Local Matching

    No full text
    In order to improve the retrieval results of digital agricultural text information and improve the efficiency of retrieval, the method for searching digital agricultural text information based on local matching is proposed. The agricultural text tree and the query tree are constructed to generate the relationship of ancestor–descendant in the query and map it to the agricultural text. According to the retrieval method of the local matching, the vector retrieval method is used to calculate the digital agricultural text and submit the similarity between the queries. The similarity is sorted from large to small so that the agricultural text tree can output digital agricultural text information in turn. In the case of adding interference information, the recall rate and precision rate of the proposed method are above 99.5%; the average retrieval time is between 4s and 6s, and the average retrieval efficiency is above 99%. The proposed method is more efficient in information retrieval and can obtain comprehensive and accurate search results, which can be used for the rapid retrieval of digital agricultural text information

    Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection

    No full text
    In this paper, we systematically investigated the influence of fluoride on the morphology and electrochemical property of Co3O4 nanostructures for hydrazine detection. The results showed that with the introduction of NH4F during the synthesis process of Co3O4, both Co(CO3)0.5(OH)·0.11H2O and Co(OH)F precursors would be generated. To understand the influence of F on the morphology and electrochemical property of Co3O4, three Co3O4 nanostructures that were respectively obtained from bare Co(CO3)0.5(OH)·0.11H2O, Co(OH)F and Co(CO3)0.5(OH)·0.11H2O mixtures and bare Co(OH)F were successfully synthesized. The electrochemical tests revealed the sensing performance of prepared Co3O4 nanostructures decreased with the increase in the fluoride contents of precursors. The more that dosages of NH4F were used, the higher crystallinity and smaller specific surface area of Co3O4 was gained. Among these three Co3O4 nanostructures, the Co3O4 that was obtained from bare Co(CO3)0.5(OH)·0.11H2O-based hydrazine sensor displayed the best performances, which exhibited a great sensitivity (32.42 ÎŒA·mM−1), a low detection limit (9.7 ΌΜ), and a wide linear range (0.010–2.380 mM), together with good selectivity, great reproducibility and longtime stability. To the best of our knowledge, it was revealed for the first time that the sensing performance of prepared Co3O4 nanostructures decreased with the increase in fluoride contents of precursors
    • 

    corecore